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The history of  Java

Chapter 2 – How the Java Virtual Machine executes code

The history of Java

Before you can start to optimise an application, you need to have at least a basic 
understanding of  what the JVM actually does when it runs your code. It can be helpful to 
start with an overview of  the history of  the language. 

Prior to the creation of  Java, every programming language could be categorised as being 
either an interpreted language or a compiled language. Interpreted languages are ones 
where the code needs a specific piece of  software (an interpreter) for the user to run it. 
For example php, a popular language for the creation of  websites, needs a webserver such 
as Apache. Javascript can be run in a web browser. For these languages it’s the raw code 
that is provided to the user. 

The alternative, the compiled languages, are those which go through an extra step before 
they can be distributed – the process of  compilation. This results in the user being given an 
executable file – for example in Windows that would be a file with the .exe extension.  The 
user doesn’t get the raw code, and can run the application without needing any additional 
software.

In the early 1980s, when the internet was in its infancy, there were advantages and 
disadvantages to each approach. The main advantage of  compiled languages were that 
the code would run faster than for an interpreted equivalent, and for businesses who had 
invested a lot of  intellectual property into their code, they did not need to expose that to 
users, who would be able to copy and use their proprietary algorithms. 

However the process of  compilation is taking the code and compiling it for a specific 
operating system. So code which has been compiled to run on a Windows computer, won’t 
run on a Mac or Linux machine (at least without additional software).  Further, because 
the architectures of  different operating systems differ significantly, it is normally the case 
that the code-base needed for a Windows program will be different to that needed for a 
Mac application. So a company wishing to sell software to both Windows and Mac users 
might need to double the effort of  code creation and management.

The main benefit of  interpreted languages is that the same code can be run on any device, 
as long as there is an interpreter available for that device. For example if  I provide you 
with some Javascript, you should be able to run it on any computer you like that has a 



Chapter 2 -  How the Java Virtual Machine executes code

10

modern browser – and in fact you can choose the interpreter (which browser) as well. This 
concept is known as “write once run anywhere” – and has the obvious benefit of  lowering 
the duplication of  effort required to create code suitable for multiple different systems. 
The disadvantage of  interpreted languages is that you are providing the client (and 
therefore potentially your competitors) with open access to your code. 

In 2022, this seems like a strange idea to claim as being a disadvantage. With the prevalence 
of  open-source code, and software as a service, meaning that you can now manage the 
deployment of  your code and sell access to it to the user, keeping interpreted code private 
is less of  an issue. But when the usual way to distribute applications was using CD-Roms, 
as it was in the early 1980s, this was an important factor for businesses selling software.

One of  the goals with the creation of  Java (more strictly the virtual machine) was to try 
and provide a “best of  both worlds” scenario. It was to be a language which can be written 
once and run anywhere, as long as there is a JVM for the operating system in question. At 
the same time it would go through a compilation process, and so gain at least some of  the 
speed benefits of  this process.

That’s the history lesson complete, now let’s look at where we are today:

Just In time compilation

You’re hopefully aware that the code we write in Java is compiled by the Java compiler 
into “bytecode”. These compiled files have a .class extension, and are optionally packaged 
together into a jar, war or ear file. 

When we actually execute our application, using the Java command, the bytecode is then 
run by the Java Virtual Machine (JVM). We can think of  this as the JVM is the interpreter 
of  bytecode.

The JVM however is not simply interpreting the bytecode. It contains a number of  features 
and complex algorithms to make it more efficient than more traditional code interpreters. 
If  you were writing code in a language such as PHP, which is not compiled but is interpreted 
at runtime by a web server, each line of  code is only looked at, analysed, and the way to 
execute it determined, as it is needed. Within the JVM, it’s a much more complicated 
process – some of  that work can be done in advance, and we will explore some of  the 
detail of  what the JVM can do in this and the next chapter.
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Just In time compilation

So the JVM is not being asked to run Java code, but rather to run bytecode. In fact any 
language which can be compiled to JVM compatible bytecode can be run on the JVM. As 
a result pretty much everything we talk about in this book will apply not just to Java, but 
to Scala, Kotlin, Groovy, Clojure and any other JVM language.

At the end of  this book, in the final chapter, we are going to look at some real bytecode, 
and we will compare bytecode produced by Java with bytecode produced by another JVM 
language.

But that’s a long way off, and right now we’re going to focus on what happens when we 
ask the JVM to actually run some bytecode. 

Initially the JVM acts like any other interpreter, running each line of  code as it is needed. 
However by default, this would make the code execution somewhat slow, so to help get 
around this problem of  slower execution in interpreted languages than compiled languages, 
the JVM has a feature called Just In Time Compilation or JIT compilation for short. The 
JVM will monitor what branches of  your code are run the most often, which methods or 
parts of  methods, specifically loops, are executed the most frequently. The JVM will then 
decide that if  a particular code block3 is being used a lot, code execution would be speeded 
up if  that method was compiled to native machine code… and it will then do this extra 
step.

At this point, some of  your application is being run in interpreted mode, and some is 
running as native machine code. The part that has been compiled to native machine code 
will run faster than the interpreted part. Just to be clear, by native machine code, we mean 
executable code that can be understood directly by your operating system. So if  you are 
running this application on Windows, part of  the bytecode has been compiled into code 
that can be understood natively by the Windows operating system. If  you were running on 
a Mac, then the JVM would have compiled this to native Mac code. The native Windows 
code and the native Mac code would of  course be different – they are not compatible. So 
the Windows JVM is able to compile bytecode into native Windows code, and the Mac 
JVM is able to compile bytecode into native Mac code. 

This process of  native compilation is completely transparent to the user, but it has an 
important implication – your code will generally run faster the longer it is left to run. 

3  Any sequence of  bytecode can be compiled to native machine code. From our point of  view 
as programmers we can think of  this as meaning any method or any code block. This is not a completely 
accurate definition, but it’s good enough to allow us to understand what the JVM is doing.
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That’s because the JVM can profile your code and work out which bits to optimise by 
compiling them to native machine code. So a method run multiple times every minute is 
likely to be JIT compiled quite quickly, but a method run once a day might not ever be JIT 
compiled. 

The process of  compiling, converting bytecode to native machine code, is run in a separate 
thread – the JVM is of  course a mutli-threaded application, so the threads responsible for 
executing the code won’t be affected by the extra thread doing the JIT compiling… and 
it also doesn’t stop or pause the application in its process of  running. While compilation 
takes place, the JVM will continue to use the interpreted version. Once the compilation is 
complete, and the native machine code version is available, the JVM will then seamlessly 
switch to the compiled version. 

If  your application is heavy on processing, using all the available CPU resources, you could 
potentially see a temporary reduction in performance while JIT compilation is taking place, 
although it would only be in the most critical and high power processing applications that 
you might notice this, and even then, it’s going to be worth the momentary slight dip in 
processing power to get the benefit of  the native code version of  your method in the 
future. 

An impact of  JIT compilation is that if  you are assessing the performance of  a particular 
piece of  code, you actually need to think about when you do that assessment. Suppose 
you’re trying to determine how long a process takes to run, and you want to see which of  
two alternative methods will run more quickly. 

If  you assess the performance as soon as your application starts, you might find that you 
get different results than if  you assess it after your application has been running for a 
short while. You need to think about whether you are assessing the performance of  the 
code before it has been natively compiled, or after. We’ll actually come back and consider 
this point in some more detail in chapter 15, when we investigate how to actually measure 
performance.

Using JVM flags

As a programmer it can be interesting to know which methods or code blocks are being 
compiled to native machine code. There’s a JVM flag we can use to find this out.

As this is the first time we have used the term “JVM flag” it requires a simple definition – 
this means an argument that we can supply to the Java Virtual Machine at runtime, which 
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Using JVM flags

will either provide a configuration setting, or ask the JVM to provide some additional 
output. 

To see how a JVM flag can be used, and in particular how it can be used to determine 
which parts of  an application are being compiled to native machine code, we’ll use a 
simple Java Program.  The code for this program can be found in the Github repository 
for this book in the “Chapter 02” folder. 

This simple program will generate a sequence of  prime numbers4 of  a desired length. This 
is absolutely not written in any kind of  production standard way; it has been purposely 
created to not be optimal in terms of  coding.

When we run this application, we will need to provide an integer command line argument. 
This number will be the volume of  prime numbers we would like the application to 
generate.

The code being executed is contained in a class called PrimeNumbers. When the application 
runs, the generateNumbers method is called, and it receives as a parameter the desired 
number of  primes provided as the command line argument.

This method instantiates an ArrayList, and then within a loop, determines each of  the 
required prime numbers in ascending order, starting with the number 2. Each number, 
when calculated is added to the list. 

There are 2 methods being called as part of  this process: the isPrime method will check if  
a number is prime or not, and the getNextPrimeAbove method executes a loop until the 
next prime number is found.

I suggest that you run the application before we go any further, just to see it working. 
I recommend that you run it from the command line, as we will be entering command 
line arguments and JVM flags, which is going to be straightforward if  we use a command 
prompt or terminal window. If  you would rather use an IDE, you will find details of  how 
to enter command line arguments and JVM flags in Appendix 2 at the end of  this book.

Having opened a command prompt or terminal window and navigated to the folder where 
the .Java files for this project can be found, entering the following will compile the 2 Java 
files into .class files.

4  A prime number is any integer which is only exactly divisible by itself  and the number 1.  
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> javac *

 The application can then be executed using the following example to create 15 prime 
numbers:

> java Main 15
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53]

The PrintCompilation flag

We are now ready to use our first JVM flag. This is simply a command line argument to the 
Java application. The flag we are going to use in this first example is:

-XX:+PrintCompilation

Most of  the flags we will be using in this book follow this standard format. They start 
with “-XX”. This is to signify that it is an advanced option. Next there is a colon, and then 
either a “+” or a “-“. This is to indicate whether the option is to be switched on (“+”) or 
off  (“-“). And then finally we get the name of  the option.  

We’ll see quite a few of  these flags as we proceed through the book. Supplying this flag 
means we want to tell the JVM to run our application with some feature or behaviour that 
is not going to be the default.

Let’s run the code again with this flag on.  It is important to note that:
•	 the flags are case sensitive and must not contain any spaces 
•	 the flags must be entered immediately after the java command, and before you 

name the class containing the main method to be executed. 

In the code output which follows, the values you get may not match the example provided 
here. The example provided is generated using Java 8. Running the code with other versions 
of  Java will result in different output. 
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The PrintCompilation flag

> java -XX:+PrintCompilation  Main 15
71   1    3   java.lang.String::hashCode (55 bytes)
74   2    3   java.lang.Object::<init> (1 bytes)
75   4    3   java.lang.String::charAt (29 bytes)
76  11  n 0   java.lang.System::arraycopy (native)   (static)
77   3    3   java.lang.AbstractStringBuilder::ensureCapacityInternal (27 bytes)
78  13    1   java.lang.Object::<init> (1 bytes)
79   2    3   java.lang.Object::<init> (1 bytes)   made not entrant
79  10    3   java.lang.AbstractStringBuilder::append (29 bytes)
81   5    3   java.lang.CharacterData::of (120 bytes)
81  17    4   java.lang.String::charAt (29 bytes)
82   8    3   java.lang.Character::toLowerCase (9 bytes)
83   4    3   java.lang.String::charAt (29 bytes)   made not entrant
84   9    3   java.lang.CharacterDataLatin1::toLowerCase (39 bytes)
85  15    3   java.io.WinNTFileSystem::isSlash (18 bytes)
86  16 s  3   java.lang.StringBuffer::append (13 bytes)
87  18    3   java.lang.String::indexOf (70 bytes)
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53]
89  20    1   java.lang.Integer::intValue (5 bytes)
90  14    3   java.lang.StringBuilder::append (8 bytes)

 
This output might seem a little daunting at first. What has been provided is every 
process of  compiling that has been carried out by the JVM as our application runs. 

The first column is the time in milliseconds since the virtual machine started. Next is the 
order in which the method was compiled. The fact that some of  these are out of  order 
means that some parts took longer to compile than others. This could be, due to multi-
threading prioritisation issues, code complexity, or length of  code being compiled.

We then have some space (actually a few columns), most of  which is blank, but we do have 
one containing the letter “n”, and one containing the letter “s”. 

The “n” means that this is a native method. The “s” means it is a synchronised method. 
You will in other examples see “!” in this section, which refers to exception handling, or 
“%” which means that the code has been native compiled and is now running in a special 
part of  memory called the code cache. A “%” next to a method means it is running in the 
most optimal way.

The next column has a number from 0 to 4. This refers to the compilation tier that has 
taken place, which we’ll explore next.

And then finally is the line of  code that has been compiled.
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Executing the application with just 15 numbers being calculated, has resulted in a relatively 
low level of  compilation. All the compilation is being carried out on core Java library 
methods (such as the String’s charAt method). None of  our code is appearing here. 

If  we run the application again using a much larger set of  numbers to calculate, such as 
5000, we’ll get some more interesting output – you may wish to comment out the line of  
code which prints the output to the console this time. Note again that your exact output 
may differ from the version shown here but the key parts will be very similar.

>java -XX:+PrintCompilation  Main 5000
...
86   22     3    PrimeNumbers::isPrime (35 bytes)
87   20     1    java.lang.Integer::intValue (5 bytes)
87   27 %   4    PrimeNumbers::isPrime @ 2 (35 bytes)
88   25     3    java.lang.Integer::<init> (10 bytes)
89   23     3    java.lang.Number::<init> (5 bytes)
90   26     3    java.lang.Integer::valueOf (32 bytes)
91   28     4    PrimeNumbers::isPrime (35 bytes)
91   21     1    java.lang.Boolean::booleanValue (5 bytes)
92   24     1    java.util.ArrayList::size (5 bytes)
93   22     3    PrimeNumbers::isPrime (35 bytes)   made not entrant
96   30     3    PrimeNumbers::getNextPrimeAbove (43 bytes)
98   31     3    java.lang.Boolean::valueOf (14 bytes)
98   29     3    java.util.ArrayList::add (29 bytes)
99   32     3    java.util.ArrayList::ensureCapacityInternal (13 bytes)
100  33     3    java.util.ArrayList::calculateCapacity (16 bytes)
101  34     3    java.util.ArrayList::ensureExplicitCapacity (26 bytes)
102  14     3    java.lang.StringBuilder::append (8 bytes)
103  19     3    java.lang.String::indexOf (7 bytes)
165  35     4    PrimeNumbers::getNextPrimeAbove (43 bytes)
171  30     3    PrimeNumbers::getNextPrimeAbove (43 bytes)   made not entrant
412  37     3    java.lang.String::getChars (62 bytes)
413  48     1    java.lang.String::length (6 bytes)
...

I have excluded some of  the output from the version provided here, to allow us to focus 
on the more interesting parts. Within the column that contains the method names we now 
have some of  our methods appearing – the isPrime method and the getnextPrimeAbove 
method. And we have a % symbol appearing here too.

The column containing the numbers between 0 and 4 is the compilation tier. It tells us 
what kind of  compiling has taken place. A zero means no compilation, the code has 
just been interpreted.  The numbers 1 to 4 means that a deeper level of  compiling has 
happened. 
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The JVM’s compilers

The JVM’s compilers

There are actually 2 compilers built into the JVM, called C1 and C2. The C1 compiler is 
able to do 3 levels of  compilation, each progressively more complex than the last one. The 
C2 compiler can undertake the 4th level.

The virtual machine decides which level of  compilation to apply to a particular block of  
code, based on how often it is being run, and how complex or time consuming it is when 
executed. 

For any method which has a number 1 to 3, the code has been compiled using the C1 
compiler. The higher the number the more “profiled” the code has been. If  the code is 
called enough, then we reach level 4 and the C2 compiler is used instead – and this is more 
optimised than the C1 compiler.

The higher the compilation tier level, the more optimised the compiled code should be. 
The JVM doesn’t just optimise everything to tier 4 because there is a trade off  – it only 
optimises the most frequently called code, and if  that code is not doing anything complex, 
there may be no benefit from a deeper level of  compilation.

In our example, the isPrime method first got compiled at tier 3, then later it got compiled 
to tier 4. At this point we also see a “%”, meaning that as well as being compiled in the 
most performant way, this has been placed in the code cache for even quicker access. 
The virtual machine determined that this method is being executed so much, and is so 
important to our application, that it needed to be compiled with the C2 compiler and 
placed in code cache for the best possible performance. 

This first flag is outputting the information to the console. There is an alternative flag 
which will output the information to a file, and this gives even more information.

The LogCompilation flag

This flag is -XX:+LogCompilation. However to use this you also need to specify the flag  
-XX:+UnlockDiagnosticVMOptions, and that flag must come first in the list.

If  you do not specify a filename, the data will be written to a file called hotspot.log in the 
current folder. Alternatively you can provide a file name with  -XX:LogFile=fileName.log.
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> java -XX:+UnlockDiagnosticVMOptions -XX:+LogCompilation Main 5000 

The log file is in XML format. The OpenJDK project provide a description of  the format 
of  the file (which they state is subject to change)5. For users of  Java 15 and above, they 
also provide a tool to help read the file. 

Having an understanding about how the JVM runs our code provides us with our first 
opportunity to improve performance.

When code has been compiled to tier 4 using the C2 compiler, as we have seen it is placed 
in the code cache. This is an efficient area of  memory. But this code cache has a limited 
size and if  there are lots of  methods that could be potentially compiled to this level, then 
some may need to be removed to make space for a new method to be added. That initial 
method might subsequently be recompiled and re-added later on. 

In other words in larger applications, with lots of  methods that could be compiled to tier 
4, over time some methods might be moved into the code cache, then moved out, then 
moved back in again later on.  When this happens, the default code cache size might not 
be sufficient, and increasing the size could lead to an improvement in your application’s 
performance.  You might even see logging messages in the following format as your 
application runs:

VM warning: CodeCache is full. Compiler has been disabled.

This is telling us that the code would run better if  another part of  it could be compiled to 
native machine code, but there is insufficient room for it in the cache. Furthermore all the 
code that is in the cache is actively being used, so no other part of  the cache can be easily 
cleaned up. This is a warning message – it doesn’t stop your application running, but it 
does mean that it’s not running in an optimal way.

The PrintCodeCache flag

We can find out about the size of  the code cache using the -XX:+PrintCodeCache flag.

>java -XX:+PrintCodeCache Main 5000
CodeCache: size=245760Kb used=1150Kb max_used=1162Kb free=244609Kb
bounds [0x000001e49e140000, 0x000001e49e3b0000, 0x000001e4ad140000]
total_blobs=289 nmethods=51 adapters=152

5  https://wiki.openjdk.java.net/display/HotSpot/LogCompilation
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Tuning the code cache

compilation: enabled

In the example application, with 5000 prime numbers, on my computer, we are told that 
the code cache is approximately 24MB, and under 1MB has been used. There is definitely 
nothing to worry about here, but clearly in a more complex application, if  you see the 
max_used number approaching the size, then a tweak might be helpful.

Tuning the code cache

The default maximum code cache size is normally 48MB. There are 3 flags we can set to 
alter this. -XX:InitialCodeCacheSize is the size of  the code cache when the application 
starts. This is normally quite small – the default size varies based on your computer’s 
available memory but is often just 160kb. 

-XX:ReservedCodeCacheSize is the maximum size of  the code cache. It can be allowed to 
grow up to this size. As we have already said the default is normally 48MB.

-XX:CodeCacheExpansionSize indicates how quickly the code cache should grow – as it 
gets full, how much extra space should we add to the code cache each time it is expanded. 

Growing the size of  the codecache can be a slightly slow process, so setting the initial code 
cache size to be the same as the reserved code cache size will probably mean a slightly 
slower startup but then no subsequent pauses, while the application is running, for the 
code cache to be resized.

Although we don’t need to do it for our application, let’s see what this would look like, as 
these flags have a slightly different format to the ones we have used so far:

> java -XX:ReservedCodeCacheSize=20M -XX:+PrintCodeCache Main 5000

We don’t use the “+” or “–“ to indicate whether this flag is to be turned on or off. Rather 
we provide the flag name, then an equals sign then a value. If  we just put a number in here, 
that means bytes. We can follow this with a K, to mean kilobytes, an M to mean megabytes, 
or a G to mean gigabytes. Actually we can’t use a G in this example – the maximum size of  
a code cache is 48M. The letters K or M can be entered in upper or lower case.
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There are some further flags that relate to the tuning of  the code cache which you will find 
in the Java reference documentation6. 

Monitoring the code cache

One of  the tools that comes with the JDK can be used to monitor the code cache size 
graphically over time – the tool is called jConsole, and can be found in the bin folder of  
the JDK. Simply double click the jConsole file to run it. 

When jConsole first starts, we need to connect it to an application to monitor. If  you are 
using an IDE this will be a running Java application that you can connect to. You may 
receive a warning that the connection is insecure, which is perfectly safe to ignore if  you 
are connecting to a process on your local machine.

6  https://docs.oracle.com/javase/8/embedded/develop-apps-platforms/codecache.htm
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Monitoring the code cache

After connecting to any application, select the memory tab and then change the selected 
chart to either “Memory pool Code Cache” if  you are using Java 8, or “Memory pool 
Code Heap profiled methods" if  you are using Java 11+.

If  you run the project now from within the IDE (refer to Appendix 2 if  you are not sure 
how to enter command line arguments within an IDE), we should see the code cache 
changing. Remember we’re monitoring our IDE here, not our code, so this is our IDE’s 
use of  the code cache. 

This tool might give you a useful way to monitor that an application isn’t growing its code 
cache out of  control over time, as you can potentially leave this tool running. However 
be aware that doing this, connecting to a running application with jConsole, actually 
means that we are running a tool that is interacting with the JVM, and this will alter 
the performance of  your application. In fact it requires the JVM to run extra code to 
communicate with jConsole, and in turn some of  this code will be compiled… to see what 
I mean, let’s connect jConsole to our application rather than our IDE.
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To do this I need to have our application run for long enough to make this meaningful, 
so I’m going to make it pause for 20 seconds when it first starts, before it commences 
doing any real work. This should give us enough time to connect to the application before 
it starts calculating prime numbers. The code to pause is currently commented out in the 
main method – simply uncomment it to execute in this way.

We can then run the application with the -XX:+PrintCompilation flag and after starting it, 
connect to it from jConsole.

> java -XX:+PrintCompilation Main 5000

As soon as you connect to the application with jConsole, you will see a large number of  
additional lines of  compilation information output on the console. This is the compilation 
work that the virtual machine is doing by running the extra code needed to communicate 
with jConsole. 

What we have seen in this chapter is not quite the complete story. In the next chapter, we’ll 
see that the way the 32 bit and 64 bit JVMs work is a little different, and that we can also 
tune the compiler that we have been learning about in this chapter to work differently…. 
This will give us some more opportunities to optimise the performance of  our applications 
at run time. 


